Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize.
نویسندگان
چکیده
Insect herbivore-induced plant volatile emission and the subsequent attraction of natural enemies is facilitated by fatty acid-amino acid conjugate (FAC) elicitors, such as volicitin [N-(17-hydroxylinolenoyl)-L-glutamine], present in caterpillar oral secretions. Insect-induced jasmonic acid (JA) and ethylene (E) are believed to mediate the magnitude of this variable response. In maize (Zea mays) seedlings, we examined the interaction of volicitin, JA, and E on the induction of volatile emission at different levels of nitrogen (N) availability that are known to influence E sensitivity. N availability and volicitin-induced sesquiterpene emission are inversely related as maximal responses were elicited in N-deficient plants. Plants with low N availability demonstrated similar volatile responses to volicitin (1 nmol plant(-1)) and JA (100 nmol plant(-1)). In contrast, plants with medium N availability released much lower amounts of volicitin-induced sesquiterpenes compared with JA, suggesting an alteration in volicitin-induced JA levels. As predicted, low N plants exhibited greater sustained increases in wound- and volicitin-induced JA levels compared with medium N plants. N availability also altered volicitin-E interactions. In low N plants, E synergized volicitin-induced sesquiterpene and indole emission 4- to 12-fold, with significant interactions first detected at 10 nL L(-1) E. Medium N plants demonstrated greatly reduced volicitin-E interactions. Volicitin-induced sesquiterpene emission was increased by E and was decreased by pretreatment the E perception inhibitor 1-methylcyclopropene without alteration in volicitin-induced JA levels. N availability influences plant responses to insect-derived elicitors through changes in E sensitivity and E-independent JA kinetics.
منابع مشابه
An herbivore elicitor activates the gene for indole emission in maize.
Maize and a variety of other plant species release volatile compounds in response to herbivore attack that serve as chemical cues to signal natural enemies of the feeding herbivore. N-(17-hydroxylinolenoyl)-l-glutamine is an elicitor component that has been isolated and chemically characterized from the regurgitant of the herbivore-pest beet armyworm. This fatty acid derivative, referred to as ...
متن کاملPhytohormone-based activity mapping of insect herbivore-produced elicitors.
In response to insect attack, many plants exhibit dynamic biochemical changes, resulting in the induced production of direct and indirect defenses. Elicitors present in herbivore oral secretions are believed to positively regulate many inducible plant defenses; however, little is known about the specificity of elicitor recognition in plants. To investigate the phylogenic distribution of elicito...
متن کاملCosts of induced volatile production in maize
Herbivore-induced plant volatiles have been shown to serve as indirect defence signals that attract natural enemies of herbivores. Parasitoids and predators exploit these plant-provided cues to locate their victims and several herbivores are repelled by the volatiles. Recently, benefits, in terms of plant fitness, from the action of the parasitoids were shown for a few systems. However, the cos...
متن کاملIntegration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP.
In plants, ethylene and jasmonate control the defense responses to multiple stressors, including insect predation. Among the defense proteins known to be regulated by ethylene is maize insect resistance 1-cysteine protease (Mir1-CP). This protein is constitutively expressed in the insect-resistant maize (Zea mays) genotype Mp708; however, its abundance significantly increases during fall armywo...
متن کاملReduction of ethylene emission from Scots pine elicited by insect egg secretion.
Pinus sylvestris L. is known to activate indirect defence in response to attack by an herbivorous sawfly. Egg deposition by the sawfly Diprion pini L. induces pine to release, three days after egg laying, locally and systemically terpenoid volatiles that attract parasitoids to kill the eggs. The elicitor of the pine's response is located in the sawfly's oviduct secretion enveloping the eggs aft...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 133 1 شماره
صفحات -
تاریخ انتشار 2003